

Grenfell Tower Structural Design Criteria

Curtins Ref: LO1212-DC-001 Revision: 00 Issue Date: 01 November 2013

entroniumens cientes environmentales explanated challen consider travelario e senantiale travelarena consider autore Erriningham - Bristol - Cardiff - Dougles - Edinburgh - Kendal - Leede - Liverpool - EGAG60 - Manchester - Notbigham

> Artolio 00002173 ART00008815/1 ART00000015_0001

Structural Design Criteria

:COV	Description	Issued by	Checked	Date
01	Draft	TRLA	TRLA	01/11/2013

This report has been prepared for the sole benefit, use, and information for the client. The liability of Curtins Consulting Limited with respect to the information contained in the report will not extend to any third party. Our report is provided for the sole use of the named client and is confidential to the client and his professional advisors. All parts of the property that were covered, unexposed or inaccessible were not inspected and therefore we are unable to report that such parts are free from defects.

It should be read in conjunction with all other Consultants reports and specifications and Curtins Consulting's drawings.

Author	Signature	Date
Thomas Ashton MEng (hons) CEng MIStructE Project Engineer	Them Matthew	XX/XX/20XX

Reviewed	Signature	Date

File location: P:\LO1000 - 99\LO1212 - Grenfell Tower Upgrade\Section G - Calculations\Design Criteria\LO1212-DC-001 (Eurocode Version).docx

Structural Design Criteria

1 CODES AND STANDARDS

1.1 OVERVIEW

Unless noted otherwise the structural design will be in accordance with the codes of practice listed in the table below:

Reference	Title
BS EN 1990 2002	Eurocode: Basis of structural design
+ UK National Annex	
BS EN 1991-1-1 2002	Eurocode 1: Actions on structures – General actions -
+ UK National Annex	Densities, Self-weight, imposed loads for buildings
BS EN 1991-1-3 2003	Eurocode 1: Actions on structures – General actions – Snow
+ UK National Annex	Loads
BS EN 1991-1-4 2005	Eurocode 1: Actions on structures - General actions - Wind
+ UK National Annex	Actions
BS EN 1992- 2004	Eurocode 2: Design of concrete structures
+ UK National Annex	
BS EN 1993- 2005	Eurocode 3: Design of steel structures
+ UK National Annex	
BS EN 1995- 2004	Eurocode 5: Design of timber structures
+ UK National Annex	
BS EN 1996- 2005	Eurocode 6: Design of masonry structures
+ UK National Annex	

1.2 Additional Design Guidance

National Structural Steelwork Specification 2007 (NSSS)

Structural Design Criteria

2 LOADING REQUIREMENTS

2.1 Permanent Loads (Dead)

The following permanent dead loads in addition to the self-weight of the slab and structural frame are to be assumed in the design of the new structure.

Description	Loading	Notes
Typical existing floor (assumed)		
- 270mm slab	6.75 kN/m ² +	
- 75mm screed	1.88 kN/m ² +	Finish and build up TDC
- Raised floor	0.30 kN/m ² +	Finish and build-up TBC
- Ceiling + Services	<u>0.45 kN/m²</u>	
	9.38 kN/m ²	
Composite deck infill		
- 150mm composite deck	3.75 kN/m ² +	
- 65mm screed	1.625 kN/m ² +	
- Floor finishes	0.30 kN/m ² +	Finish and build-up TBC
- Ceiling + Services	<u>0.45 kN/m²</u>	
	6.125 kN/m ²	

2.2 Variable Loads (Q_k Live)

Loads in accordance with BS EN 1991-1-1 2002 + UK National Annex:

Description	Uniform Load	Notes
Entrance lobby (C33)	4.00kN/m ²	Potentially subject to crowd Ioad
Boxing club (C41)	5.00kN/m ²	Storage and loading requirements to be confirmed

Structural Design Criteria

Office (B1)	2.50+1kN/m ²	Includes an allowance for light partitioning
Nursery (C13)	3.00kN/m ²	Potentially subject to crowd load
Residential (A1)	1.50+1kN/m ²	

2.3 Wind Loads

In accordance with BS EN 1991-1-4 2005+ UK National Annex:

Parameter	Value	Notes
Basic Wind Speed	V _b = 21.5 m/s	Refer to BS EN 1991-1-4 2005 Figure NA.1
Roughness factor	c _r (z) = 1.37	Refer to BS EN 1991-1-4 2005 Figure NA.3
Mean Wind Speed	V _m = 29.5 m/s	$Vm = C_r (z) \times C_0 (Z) \times V_b$

2.4 Snow Loads

In accordance with BS EN 1991-1-3 2003+ UK National Annex:

Parameter	Value	Notes
Zone Number	Z = 3	Refer to BS EN 1991-1-3 2003 Figure NA.1
Building Altitude	A = 12m	
Characteristic Snow Load	$S_k = 0.33 kN/m^2$	Sk = (0.15 + (0.1xZ+0.05))+((A- 100)/525) (NA.1)
Snow Load Shape Coefficient	μ1 = 0.80	Refer to BS EN 1991-1-3 2003 Table NA.1

Structural Design Criteria

3 DEFLECTION CRITERIA

Deflection limits in accordance with the governing design codes and established best practice:

3.1	Vertical	Deflection	Limits	
-----	----------	------------	--------	--

Element	Load Condition	Deflection Limit	Notes
Beams	Dead + Live	L/250	Normal Finish
			Nermal Finish
Beams	Live	L/360	Normal Finish
Beams	Live	L/500	Brittle Finish
Cantilevers	Live	L/180	

3.2 Horizontal Limits

Element	Load Condition	Deflection Limit	Notes
Column	Wind	H/300	Normal Finish
Column	Wind	H/500	Brittle Finish

3.3 Floor Dynamics

Unless noted otherwise the occupied floor structure within the building will be designed to the SCI Report P354, Design of Floors for Vibration which leads to the following dynamic performance criteria:

Area	Guide Natural Frequency limit	R factor ¹ Limit	Notes
Critical Area (Hospital)	N.A.	1	Refer to ASHRAE Guidance
Residential	6Hz	4	Criteria can vary depending on time of day
Office	4Hz	8	
Stairs (Heavy use)	N.A.	24	

Structural Design Criteria

¹ Response or Multiplying factor applied to the base curve of human perception and based on a continuous single person walking excitation.

4 ADDITIONAL CRITERIA

4.1 Design Life

A minimum design life of 60 years will be provided on all concrete elements through the correct detailing of concrete cover to all steel reinforcement.

Structural steel elements, where accessible, will be provided with an appropriate anti-corrosion paint protection system specified by the architect to provide a life to first maintenance of 15-20 years within a design life of 60 years.

4.2 Tolerances

Building tolerances shall be in accordance with the relevant National Specifications, good practice guides and BS 5606 Accuracy in Buildings.

4.3 Fire strategy

TBC by architect